

TEMA 4: PROBLEMAS DE TRANSPORTE E AFECTAÇÃO

4.1. Problema de Transporte

Este problema, que é um dos particulares de PL, consiste em determinar a forma mais económica de enviar um *bem* disponível, em quantidades limitadas, em determinados locais para outros locais onde é necessário. Como qualquer problemas de PL, também este pode ser resolvido pelo método Simplex. Porém, a sua estrutura própria permitiu a utilização de métodos que, embora derivados do Simplex, são mais eficientes.

O problema clássico de transporte surge com a necessidade de programar a distribuição óptima de um produto homogéneo que:

- a) encontra-se disponível em **m** origens nas quantidades fixas **ai > 0** (oferta), com i = 1, ..., **m**;
- b) é necessário em **n** destinos nas quantidades fixas **bj > 0** (procura), com j = 1, 2, ..., **n**;
- c) deve ser enviado directamente para os destinos, esgotando as disponibilidades em cada origem e satisfazendo as necessidades em cada destino (a procura total iguala a oferta total);

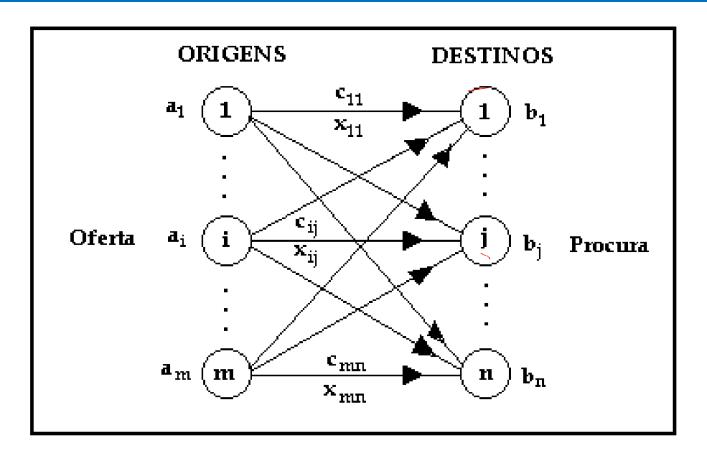


Figura 1. Rede do Problema de Transporte.

Me. Isac Ilal / Aula 10/2024

Para qualquer plano de transporte admissível:

$$\sum_{j} x_{ij} = a_i \text{ soma em linha dos } x_{ij} \text{ iguala a quantidade de } a_i$$

$$\sum_{i} x_{ij} = b_{j} \text{ soma em coluna dos } x_{ij} \text{ iguala a quantidade de } a_{j}$$

O custo de transporte associado a cada percurso (i, j) é dado por c_{ij} x_{ij} , pelo que o custo total do plano de transporte é dado por

$$\sum_{i} \sum_{j} c_{ij} \times x_{ij}$$

DESTINOS

O R I G E N S

	1		2		2		• • •	n		Oferta
1	x ₁₁	c ₁₁	x ₁₂	c ₁₂		x _{1n}	c _{1n}	a ₁		
2	x ₂₁	c ₂₁	x ₂₂	c ₂₂		x _{2n}	c _{2n}	a ₂		
•••						•	• •	•••		
m	x _{m1}	c _{m1}	x _{m2}	c _{m2}		x _{mn}	c _{mn}	a _m		
Procura	b ₁		b ₂		• • •	b _n		$\sum \mathbf{a_i} = \sum \mathbf{b_j}$		

Quadro 1. Quadro do Problema de Transporte.

4.1.1. Formalização do Problema de Transporte

minimizar
$$\mathbf{w} = \sum_{i=1}^{n} \sum_{j=1}^{n} cij \times xij$$

$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i \ (i=1,2,...,m) \end{cases} \qquad restrições \ de \ oferta \\ sujeito \grave{a} \begin{cases} \sum_{i=1}^{m} x_{ij} = b_i \ (j=1,2,...,n) \end{cases} \qquad restrições \ de \ procura \\ x_{ij} \geq 0 \qquad (i=1,2,...,m; \ j=1,2,...,n) \end{cases}$$

Exemplo : Certa empresa possui 2 fábricas a produzirem determinado produto, a ser depois transportado para 3 centros de distribuição. As fábricas 1 e 2 produzem 100 e 50 carregamentos por mês, respectivamente. Os centros 1, 2 e 3 necessitam de receber 80, 30 e 40 carregamentos por mês, respectivamente. Sabendo que os custos de transporte, por carregamento, são os que constam no quadro :

	Centro 1	Centro 2	Centro 3
Fábrica 1	7	4	3
Fábrica 2	3	1	2

Minimizar
$$Z = 7 x_{11} + 4 x_{12} + 3 x_{13} + 3 x_{21} + x_{22} + 2 x_{23}$$

Sujeito a $x_{11} + x_{12} + x_{13} = 100$
 $x_{21} + x_{22} + x_{23} = 50$
 $x_{11} + x_{21} = 80$
 $x_{12} + x_{22} = 30$
 $x_{13} + x_{22} = 40$

Me. Isac Ilal / Aula 10/2024

4.1.2. Resolução do problema de transporte

A resolução de um problema de transportes envolve, tal como o problema de PL, os seguintes passos :

Passo 1. Obtenção de uma SBA inicial.

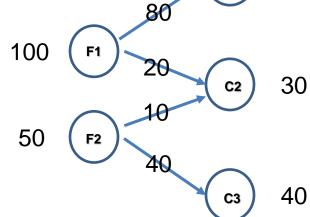
Passo 2. Teste de optimalidade: se a SBA em presença satisfaz o critério do óptimo, o processo termina; caso contrário, continuar.

Passo 3. *Melhoria da solução*: cálculo de nova SBA através da introdução na base de uma VNB em substituição de uma VB. Voltar ao Passo 2.

4.1.2.1. Obtenção de uma SBA inicial

Método do Canto Noroeste - Este método é fácil de aplicar, mas tem um inconveniente: não considera os custos de transporte. Aqui, a variável escolhida como básica é, em cada quadro, a que se encontra situada no canto superior esquerdo (canto Noroeste).

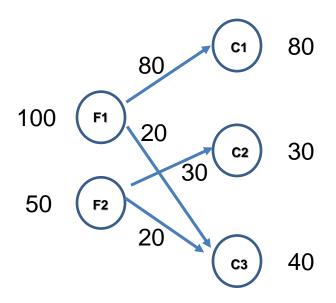
	C.1	C.2	C.3	Oferta
F.1	7	4	3	100
F.2	3	1	2	50
Procura	80	30	40	150



$$Z = 7 \times 80 + 4 \times 20 + 1 \times 10 + 2 \times 40 = 730$$

Método do Custo Mínimo - Este método, ao invés do anterior, tem em consideração a matriz dos custos de transporte, pelo que, em princípio, determina soluções iniciais mais próximas da solução óptima.

	C1		C	2	С	3	Oferta	
F1	80	7		4	20	3	100	
F2		3	30	1	20	2	50	
Procura	80		30		4	0	150	



$$Z = 7 \times 80 + 3 \times 20 + 1 \times 30 + 2 \times 20 = 690$$

Método das Penalidades - Neste método, o critério de escolha da variável a tomar como básica em cada quadro é o do menor custo da linha ou coluna associada à maior das diferenças entre os dois menores custos da cada linha ou coluna (penalidades).

	С	1	С	2	С	3	Oferta			30 ⁷ c ₁	
F1	30	7	30	4	40	3	100	1 1 1 x		50	
F2	50	3		1		2	50	1 x x x	100	30, 00	
Procura	8	0	3	0	4	0	150			C2	
		4		3		1			50	F2 100	
		7		4		3			00	40	
		X		<u>4</u>		3				(C3)	
		Х		Х		3	1				

$$Z = 7 \times 30 + 4 \times 30 + 3 \times 40 + 3 \times 50 = 600$$

Me. Isac IIal / Aula 10/2024

Exercício: Sejam dadas 3 origens A, B e C com as possibilidades de 90, 110 e 50 unidades de medida, respectivamente e 4 destinos 1, 2, 3 e 4 que necessitam de 60, 50, 85 e 45 unidades de medida. Sendo dada a matriz dos custos, determinar pelo método de:

- a) Canto Noroeste, o custo de transposte.
- b) Custo Mínimo, o custo de transporte.

	1	2	3	4
Α	42	40	40	44
В	46	31	38	35
С	30	38	46	41

 c) Aproximação de Vogel (método das penalidades) a alocação óptima de modo que o custo de transporte seja mínimo.

Agora suponha que a matriz dos custos representa lucros e procure maximizar o lucro total, usando:

- i) O métod do lucro máximo
- ii) O método de aproximação de Vogel. 10/2024

SUMÁRIO

Resolução de problemas de transpote pelos métodos de:

- a) Canto Noroeste
- b) Custo Mínimo / Lucro Máximo
- c) Aproximação de Vogel (penalidades)

TPC: Exercícios 5.1 à 5.5 (páginas 112 e 113 do Mulenga)